A New Application of UV-Ozone Treatment in the Preparation of Substrate-Supported, Mesoporous Thin Films
نویسندگان
چکیده
A nominally room temperature photochemical method, simply employing ultraviolet light(187-254 nm) generated ozone environment, is shown to provide an efficient alternative for the removal of surfactant templates for a routine production of mesoporous silica thin films at low temperatures. The treatment concomitantly strengthens the silicate phase by fostering the condensation of unreacted silanols leading to mesoporous thin films with welldefined mesoscopic morphologies. The surfactant/silicate thin film mesophases were prepared onto a polycrystalline Au surface by dip-coating or spin-casting methods using sub-critical micelle concentration (cmc) nonionic ethylene oxide surfactant in an oligomeric silica sol mixture. The structures and compositions of the thin film mesophases before and after exposure to UV/ozone were determined using a combination of reflection-absorption Fourier transform infrared spectroscopy, transmission electron microscopy, and thin film X-ray diffraction measurements. The pore characteristics of the UV/ozone-treated films were determined using nitrogen adsorption/desporption isotherm measurements. Results presented here clearly establish that the UV/ozone processing leads to complete removal of the surfactant template; strengthens the inorganic skeleton by fostering silica condensation; and renders the mesophase thin film surfaces highly hydrophilic. Two of the most attractive features of the method developed here, namely its usefulness in applications for temperature intolerant substrates (e.g., thin metal films) and in spatially selective removal of the surfactant templates to create patterns of mesoporous thin films, are also illustrated. Finally, the mechanistic implications of these observations are also discussed.
منابع مشابه
Preparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملPreparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon
In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...
متن کاملPreparation and Characterization of WO3 Electrochromic Films Obtained by the Sol-Gel Process
Tungsten trioxide (WO3) films have been coated on indium thin oxide (ITO) conductive glass substrate, using aqueous solution of peroxotungstic acid (PTA) by the sol-gel dip coating method. X-ray diffractometery (XRD) analysis confirmed monoclinic and triclinic structure for the film and powdered WO3 respectively. Fourier transforms infrared spectroscopy (FT-IR) exhibit...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کامل